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K a toms are located between the  chains in positions 
which are not  equivalent,  bu t  both K atoms are sur- 
rounded by  seven C1 atoms, six in the corners of a dis- 
tor ted  tr igonal prism and one on a lateral  face. The 
c axis of the s t ruc ture  is parallel  to the tr igonal  axis 
of  the prism around K (I) and  to one of the base edges 
of the  t r igonal  pr ism around K (II).  The calculated 
distances are listed in Table 4. 

Table 4. Calculated distances in K2CuC1 a 

(Values in A. Maximum error about 0.04 A.) 
Cu-CI (I) in the same symmetry plane 2.31 
Cu-C1 (II) in the same symmetry plane 2.32 
Cu-C1 (III) in different symmetry planes 2.43 
K (I)-CI (II) in the same symmetry plane 3.20 
K (I)-C1 (II) in different symmetry planes 3"18 
K (I)-C1 (III) in different symmetry planes 3.22 
K (I)-C1 (I) in different symmetry planes 3.27 
K (II)-CI (III) in the same symmetry plane 3.23 
K (II)-C1 (III) in the same symmetry plane 3.18 
K (II)-C1 (I) in the same symmetry plane 3.18 
K (II)-C1 (II) in different symmetry planes 3.22 
K (II)-C1 (I) in different symmetry planes 3.12 
Cu-C1 distance in CuC1 2.34 
K-C1 distance in KC1 3.14 

The chains have  some analogy with the  SiOa chains 
in the  pyroxenes,  but  still there is a typical  difference, 
resulting in greater  compactness of the CuC1 a chain 
(Fig. 7). I n  a CuC1 a chain of the type  of the  Si03 chain 
in the  pyroxenes the  Cu-Cu distance would be larger. 

The s t ructure  satisfies the  electrostatic valence rule 
(Pauling, 1939, p. 364): the  sum of the  s trength of the 
electrostatic bonds to C11 and to C1 I I  is" ~ + ¼ = 0-96, 

4 2 and to C1 I I I "  y + ~ = 1.07. 

The chains are in  agreement  with the  observed 
optical behaviour (largest refractive index in the  
needle direction). 

I t  is a great  pleasure to us to t hank  Prof. Dr  A. E. 
van  Arkel,  Leiden, for suggesting and st imulat ing this 
investigation and for reading the  manuscript .  

(a) (b) 
Fig. 7. (a) Chain in pyroxenos (idealized). Small circles are 

Si, large circles O. (b) Chain in K2CuCI a (idealized). Small 
circles are Cu, large circles C1. 
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Relation between Residual Strain Energy and Elastic Moduli* 
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I t  is shown that  the presence of residual strain energy necessarily results in a lowering of the overall 
tensile mad shear moduli, and a quantitative relation is derived between the density of residual 
strain energy and the decrease in tensile and shear moduli. Art interpretation is thereby given to 
the recent observations of KSster that  solute atoms of only a small solubility lower the tensile 
modulus when they are atomically dispersed. 

Introduction 
The inspiration for the  present  paper  has been derived 
from the  recent s tudy  of KSster  & Rauscher  (1948) 
regarding the  influence of solute a toms in solid solution 
upon the  tensile elastic modulus of metals.  KSster  has 
found tha t  alloying elements always reduce the tensile 
elastic moduli  of Cu, Ag, and Au provided the  

* This research has been partially supported by the Office 
of Naval Research, USN (Contract No. N-6ori-IV, Contract 
NR 015 018). 

m a x i m u m  solubility of the  alloying elements is less 
t h a n  20 atomic %. He fur ther  found a rough correlation 
between the  m a x i m u m  solubility and the  ra te  a t  which 
the  elastic modulus decreases with increasing concen- 
t rat ion,  the  lower the  solubility the  greater  the  ra te  a t  
which the elastic modulus decreases. The general t rends 
are indicated in Fig. 1 for alloying elements in copper. 

I t  would appear  a t  first sight as ff no correlation 
whatsoever  should exist between the  limit of solubility 
and the decrease in elastic modulus. Closer examina-  
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tion reveals, however, a possible common physical 
origin of both the limit of solubility and the decrease in 
elastic modulus. One of the primary factors which limit 
solubility is the difference in size between solute and 
solvent atoms (Hume-Rothery, 1945, pp. 59-63). A 
difference in size results in an introduction of strain 
energy whenever a solute atom is added to the lattice, 
which strain energy reduces the solubility of the solute 
atoms at any given temperature. We are, therefore, led 
to investigate whether strain energy per se has an in- 
fluence upon the elastic modulus. 
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Fig. 1. K6sber;s data on effect of alloying elements in solid 
solution upon elastic modulus. 

Analys i s  

The general nature of the relation between residual 
strain energy and the overall tensile or shear modulus 
may readily be obtained. We first note that under most 
conditions the residual strain energy is primarily shear- 
strain energy as opposed to dilation-strain energy. Thus 
in an elastically isotropic medium the shear-strain 
energy associated with a uniaxial tension is as high as 
eight times the dilation-strain energy when Poisson's 
ratio ha~ the typical value of ~,1 and the strain induced 
by a pressure acting upon the surface of a small spherical 
cavity is exclusively pure shear strain. We next note 
that when the tensile modulus E is expressed in terms 
of the bulk modulus K and the shear modulus G, 

E -1 = ~K -1 + ½G -z. (1) 

E is found, for typical values of Poisson's constant, to 
be eight times as sensitive to changes in G as to the 
same relative change in K. The tensile modulus will 
thus depend upon the various physical parameters in 
essentially the same manner as does the shear modulus. 

From the above we conclude that  it suffices to find 
the nature of the relation between the residual shear- 
strain energy and the overall shear modulus. Towards 
this end we shall consider a cylindricM specimen to be 
simultaneously subjected to a torque v applied at the 
two ends, and to a hydrostatic pressure p applied over 
the entire surface. The specimen will be considered as 
polycrystalline with a random orientation of the in- 
dividual crystallites, and hence may be regarded as 
macroscopically isotropic. Under these conditions an 
increment in energy 3E of the specimen becomes 

~E= - p ~ v + v 3 ¢ +  T ~ S ,  

where ¢ is the angle of twist, and v is the volume, S the 
entropy, of the entire specimen. Since we shall wish to 
regard as independent variables the quantities, p, ¢ 
and T, we form the following perfect differential: 

3 ( E + p v -  T S ) = v 3 p + r 3 ¢ - S 3 T .  (2) 

Since the left member, and hence also the right member, 
is a perfect differential, the following relation is satis- 

fied, (aS/a¢)~, T = - (OrJDT)~,,¢ . (3) 

From symmetry considerations alone we see that  each 
member of (3) is zero when ¢ itself is zero. In order to 
obtain an equation which is non-trivial when ¢ is zero 
we divide each side of (3) by T. We now denote by e the 
work done by the torque in twisting the specimen from 
equilibrium to ¢, the pressure and temperature re- 
maining constant. The resulting equation may then be 
written as (aSlac),,,r= --(a In ~'lam),,,¢. (4) 

When we now introduce the rigidity G of the 
specimen, defined by the equation 

T=G¢, 

the right-hand member of (4) may be rewritten as 

- d l n G / g T ,  

where in t~king the derivative it is implicitly assumed 
that the pressure is maintained constant. In order to 
obtain an equation involving the change in overall shear 
modulus with residual shear-strain energy, we shall find 
it necessary to change the form of the left member of 
(4) by means of several approximating assumptions. 
Our first assumption is that  the temperature is suffi- 
ciently high so that  all the normal modes of vibration 
have their classical energy. This assumption leads to 
the following equation: 

(aS/ae)~, r =  - 3 N k d  ln ~/de, 

where N is the total number of atoms in the specimen, 
and ~ is the geometrical mean of all the frequencies of 
the normal modes of vibration. In forming the de- 
rivative in the right member it is implicitly assumed 
that the pressure and temperature are to be held con- 
stant. These two transformations reduce (4) to 

d ln  ~/de=(3Nk)-Z d l n  G/dT.  (5) 

Our next approximation concerns the manner in 
which the mean frequency ~ is related to the elastic 
coefficients. Now ~ is proportional to the square root 
of some mean of the elastic coefficients. When cogni- 
zance is taken of the fact that  in an isotropic medium 
there are twice as many transverse waves as longi- 
tudinal waves, we see that  only a minor error is intro- 
duced by replacing the mean elastic coefficient by just 
the shear coefficient #. The mean frequency ~ is likewise 
proportional to the sixth root of the volume, as may 
be seen by combining the two equations 

¢, ,~ cV-~ and c ,-, ( lzV/M) t, 
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where c is the velocity of the shear waves, and M is the 
mass of the specimen. Our present approximation 
therefore leads to 

dln~,/de=½dln/z/de+~dln V/de. (6) 

The second term is analyzed in the Appendix, and is 
found to be an order of magnitude smaller than the first 
term. Substitution of (6) into (5) then leads to the 
following approximate equation: 

din/z/de ~ (3N~)-ldln G/dT. (7) 

Before the above equation can be applied to our 
present problem, the left member must be reinter- 
preted. According to our derivation, e is the strain 
energy introduced by an axial torque, and/z is the shear 
coefficient for shear heat waves averaged over all 
directions of propagation and over all directions of 
polarization. While the shear coefficients of the heat 
waves are independent of direction of propagation when 
no torque is present, they are not necessarily the same 
in the presence of a finite torque. I t  is clear tha t  the 
left member of (7) will remain unaltered if we now let 
/z refer to a single pair of planes of maximum shear 
stress, rather than to an average over all orientation, 
provided we simultaneously regard e as shear-strain 
energy in which the planes of maximum shear stress 
are randomly distributed, rather than as shear-strain 
energy in which only one pair of planes of maximum 
shear stress is present. Such a random distribution of 
planes of maximum shear stress occurs, for example, 
when the shear-strain energy arises from the presence 
of solute atoms. This new interpretation of the differ- 
ential coefficient dln/z/de is now in a form tha t  is 
directly applicable to our problem. 

In the derivation of (7) e and N were defined as the 
total shear-strain energy and the total  number of atoms 
within the specimen. This equation remains unaltered 
if we now regard e and N both as referring to unit 
volume rather than to the entire specimen. 

Discussion 

We have in (7) a method for computing the effect of 
shear-strain energy upon the overall shear coefficient. 
The differential coefficient d ln G/dT is just the tem- 
perature coefficient of the rigidity modulus obtained by 
a static method, or by a dynamical method using an 
auxiliary inertia arm, provided no a t tempt  is made to 
correct for those changes in dimensions which accom- 
pany a change in temperature. This differential coeffi- 
cient has been measured by Kg for several metals in his 
recent studies of relaxation phenomena in metals. His 
data are reproduced in Table 1. 

Table 1. Temperature coe~cient of rigidity modulus 
Metal  Ta  Fe  A1 ce-Brass 

Reference  K@ K@ K@ K6 
(1948a) (1948b) (1947) (1948c) 

(G~½c dG/dT) × l0 s -- 180 - -260 - -515 - -293 
f l x  l0  s 19 23 72 60 
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The negative sign of the temperature coefficient of G 
insures us tha t  residual shear-strain energy will reduce 
the overall shear coefficient/z. Before proceeding to a 
quantitative test of our theory, we shall first introduce 
one further approximation which will change (7) into 
a form in which we can utilize the large amount of data 
upon the temperature coefficient of/z. We note that  G 
may be written as the product of a geometrical factor 
and of/z. This geometrical factor has the dimensions of 
volume. Hence 

dln G/dT=dln/z/dT + fl, (8) 

where/? is the cubic thermal expansion coefficient. By 
reference to Table 1 we see tha t /?  is nearly an order of 
magnitude less than the first term in the right member 
of (8), and hence only a slight error will be made in 
neglecting/?. When this approximation is introduced, 
the substitution of (8) into (7) leads to 

d/z/de= (-~Nk) -1 d/z/dT. (9) 

This approximate equation may be given a very simple 
interpretation, namely, tha t  the variation of/z  with 
strain energy arising from residual stresses is identical 
with the variation of/z with the strain energy intro- 
duced by thermal vibrations. 

Extensive measurements of the temperature varia- 
tion of the Young's modulus E of different metals have 
recently been presented by K6ster (1948). An estimate 
of the temperature variation of/z may then be obtained 
from the approximate equation 

d/z/dT=-~dE/dT, (10) 

the factor of ~ corresponding to a typical Poisson ratio 
of ½. Table 2 for d/z/de has been constructed by the 
substitution of K6ster's data into (10) and (9). 

Table 2. d/z/de for cubic metals 
Metal --d/x/de 

Ag 13 
A1 10 
Au 5"3 
Ba  5-0 
Ca 5-8 
Cu 7.3 
Fo 12 
In  23 
I r  28 

Metal  --d/xlde 
Mo 12 
Ni 12 
Pb  8.6 
P d  4.4 
P t  4.4 
R h  27 
Ta  10 
W 12 

The above analysis is in qualitative agreement with 
K6ster's observation upon the influence of atomically 
dispersed solute atoms upon the elastic tensile modulus, 
in tha t  the negative sign of d#/de will lead to a decrease 
in # with increasing solute concentration provided the 
solute atoms introduce considerable strain energy. We 
shall now make a quantitative comparison of the results 
of the above analysis with KSster's data. Since only a 
rough estimate may be made of the strain energy intro- 
duced by solute atoms, the best tha t  can be hoped for 
is agreement in order of magnitude. 

In estimating the strain energy introduced by solute 
atoms, we shall consider the matrix as elastically 

IX 
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isotropic and as continuous, thereby allowing use of 
standard elasticity theory. We then equate the strain 
energy associated with a single solute atom to the work 
required to expand (or contract) a spherical cavity 
within the continuous matrix from an initial radius 
equal to the radius of a solvent atom, to a final radius 
equal to that  of the solute atom. When cognizance is 
taken of the fact that  the bulk modulus of a spherical 
cavity is (-~g), we obtain for the strain energy associated 
with a single solute atom 

3e = 81rgR (3R) ~, 

where R is the radius of the solvent atom, and 3R is the 
difference in the radii of the solvent and solute atoms. 
The number of solute atoms per unit volume may be 
taken as 3c/41rR a, where c is the atomic concentration of 
the solute atoms. We thereby obtain the following 
estimate for the strain energy per unit volume: 

e=6g(3R/R)2c. 

Substitution of this relation between e and c in (9) leads 

to /~-ld#/dc=4(~R/R)9(Nk)-X(dg/dT). (11) 

The above estimated value of g-ldg/dc is compared in 
Table 3 with KSster's observed values in the case where 
the matrix is copper. While K6ster's data actually give 
us E-eriE~tic, we may consider this as equivalent to 
#-ld#ldc. I t  is seen that  in every case the estimated 
values of g-ld#/dc are of the same order of magnitude as 
are the observed values. For those solute atoms which 
are larger than the matrix atoms, we expect the value 
of g-ldg/dc to be larger the larger the solute atom. This 
is seen to be indeed the case. 

Table 3. Comparison with experiment 

(Copper as solvent)  

--It -I (a/~]dc) 
Soluto R* ~ ~ ~  t 

a t o m  (A.) Est .  Obs. 

Sb 1.614 3.2 12 
Mg 1.60 2.8 4 
Sn 1.582 2.6 4 
Ag 1.441 0.75 1.6 
A1 1.40 0.43 0.4 
Zn 1.374 0.27 0.5 
Cu 1.275 - -  - -  
Be  1.125 0.62 2.0 

* H u m e - R o t h e ~ y  (1945, pp.  47-55). 

APPENDIX 

In (6) the second term in the right member was neglected 
in comparison with the first term. This step will now 

be justified. In order that  we may compare two dimen- 
sionless quantities, the right member is written as 

dg/gc + ~mi h~ rid6, (i) 
the numerical factor ½g-1 being omitted. 

The second term in (i) has already been evaluated by 
the author (Zener, 1942) in his study on the influence of 
plastic deformation on overall lattice expansion. The 
final result may be obtained directly from (2) by follow- 
ing the procedure utilized in the derivation of (4), 
except that  now the cross-differentials are to be taken 
between the first two terms in (2). Upon replacing r 
by Me,  and upon noting that  M is the product ofg and 
of a geometrical factor having the dimensions of volume, 
we obtain dV/de = - K -1 + d ln g/dp. 

The last term will now be estimated through the assump- 
tion that  # is the elastic coefficient which controls the 
mean frequency g of all the normal modes of vibration. 
From the relation 

d l n g = 2 d l n g - ½ d l n  V, 

previously used in (5), we have 

d ln g/dp= K- l  (2y-½), 

where y is Griineisen's constant. Upon letting e now 
refer to shear-strain energy per unit volume, we obtain 
finally for the expression (i) 

@/de + (2g/3K) ( 7 -  §). (fi) 

Upon taking ~ as the typical value of g/K, and upon 
observing that  7 lies between 1 and 3 for most metals 
(Mort & Jones, 1936, p. 318), we s6e that  the second 
term in (ii) is usually less than ½, and hence, from 
Table 2, the first term is an order of magnitude greater 
than the second term. 
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